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Equivalence principle in Chameleon models
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Abstract. Most theories that predict time and/or space variation of fundamental constants
also predict violations of the Weak Equivalence Principle (WEP). Khoury and Weltmann
proposed the chameleon model in 2004 and claimed that this model avoids experimental
bounds on WEP. We present a contrasting view based on an approximate calculation of
the two body problem for the chameleon field and show that the force depends on the test
body composition. Furthermore, we compare the prediction of the force on a test body with
Eötvös type experiments and find that the chameleon field effect cannot account for current
bounds.
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1. Introduction

Most theories that predict variation of fun-
damental constants, also predict violations
of the Weak Equivalence Principle (WEP)
Bekenstein (1982); Barrow et al. (2002);
Olive & Pospelov (2002); Damour &
Polyakov (1994); Palma et al. (2003). The
reason for this is that the mass of a body is
made of many contributions related to vari-
ous interaction energies (strong, weak, elec-
tromagnetic). Therefore any theory in which
the local coupling constants become effec-
tively spatially dependent through their direct
dependence on an light scalar field will en-
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tail some non-universality in the free-fall ac-
celeration of bodies embedded in an external
gravitational field. On the other hand, WEP
is strongly constrained by Eötvös type ex-
periments; latest results give ∆a

a ' 10−14.
However, some schemes claim to be able to
avoid this problem based on proposals such
as the chameleon models and the Dilaton-
Matter-gravity model with strong coupling
Damour et al. (2002). Chameleon models
where introduced by Khoury & Weltman
(2004) and further developments were per-
formed by several authors Brax et al. (2004);
Mota & Shaw (2007). Khoury and Weltman,
2004 have shown that the parameters of the
chameleon model were constrained by experi-



Kraiselburd et al: Equivalence principle in Chameleon models 33

mental bounds of the WEP. On the other hand,
Mota & Shaw, 2007 claim that while the linear
and quasi-linear solution seems to predict vi-
olation of WEP, the non-linear solution avoids
that prediction at the particle level. According
to these authors, the reason for this lies in that
the non-linear effects become relevant only on
a small region near the body’s surface which
has been denominated “the thin shell”. Based
on such analysis, it has been argued that the
chameleon field does not depend on the com-
position of the falling body or in general on the
interaction between the matter and chameleon
fields. In this paper, we perform an alternative
calculation of the chameleon mediated force on
a free falling body exerted by a large body like
a mountain or the Earth. First, we propose an
approximate solution of the two body problem
and show that the force on a test body depends
on its composition. Furthermore we compare
the prediction for the differential acceleration
between two test objects of different composi-
tion, subject to the Earth’s or Suns attraction,
with the corresponding observational bounds
extracted from Eötvös type experiments.

2. The Model

Let us first briefly review the chameleon
model. The theory is characterized by the gen-
eral action:

S =

∫
d4x
√−g

[
Mpl

2
R − (∂Φ)2 − V(Φ)

]

−
∫

d4xLm

(
Ψ(i)

m , g
(i)
µν

)
(1)

where each matter field Ψ(i) couples to a
metric g(i)

µν related to the Einstein-frame metric
gµν by a conformal factor: g(i)

µν = exp 2βiΦ

Mpl
gµν,

Mpl is the Planck mass and the potential is as-
sumed to be V(Φ) = M4+nΦ−n where M is a
constant. In order to exhibit the chameleon ef-
fect we shall assume βi = β, although it is
precisely the fact that each species of parti-
cle couples differently to the chameleon field
the reason behind the potential violation of the
WEP, and so the thin shell effect has been con-
sidered as the crucial mechanism required to
suppress such violations. The dynamics of the

chameleon depends crucially on its effective
potential according to the following equation:

�Φ =
∂Ve f f

∂Φ
(2)

Ve f f = V(Φ) − T exp(
βΦ

Mpl
)

where T is the trace of the energy-momentum
tensor of the matter occupying the region under
consideration.

In order to compute the force on a test
body that is free-falling in the presence of a
larger body, we have to solve the above equa-
tion for the case of two bodies. In this pa-
per, we present an approximate solution for the
chameleon field in the presence of two spher-
ical bodies. We expand the most general solu-
tion in terms of complete sets of solutions in
three regions:i) Inside the large body, ii) Inside
the test body and iii) Outside both bodies. For
region i) and iii) we keep the dominant term:
the one-body solution. Inside the free falling
body we seek the most general solution for the
two body problem, and impose continuity at
the border.

For the benefit of the reader we repro-
duce the solution of Eq. (2) for a spherically-
symmetric body of radius R and density ρin im-
mersed in an external medium of density ρout
(for details see Khoury & Weltman 2004) be-
ing Tin(out) = −ρin(out) +3Pin(out). In this case we
must consider 2 regions and 3P→ 0:

ρ =



ρin r ≤ R

ρout r > R

The next step is to make suitable expansions
of the effective potential about the correspond-
ing minimum both for the outside and inside
regions:

V in,out
e f f (Φ) ' V in,out

e f f (Φin,out
min )

+
1
2
∂ΦΦV in,out

e f f (Φin,out
min )(Φ − Φ

in,out
min )
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where the superscript in(out) refers to inside
(outside) of the large body. We define:

m2in,out
e f f (Φin,out

min , β, Tin,out) = ∂ΦΦV in,out
e f f (Φin,out

min )

Thus we are lead to solve the following equa-
tions:

1
r
∂r(r2∂rΦin) = m2in

e f f (Φ
in − Φin

min)

1
r
∂r(r2∂rΦout) = m2out

e f f (Φout − Φout
min)

with the border conditions:

Φin(r = 0) = Φ0

∂rΦin(r = 0) = 0
Φout(r → ∞) = Φout

min = Φ∞

and the condition for both solutions
(in, out) to match is:

Φin(r = R) = Φout(r = R)
∂rΦin(r = R) = ∂rΦout(r = R)

The solution for the one body problem for
r ≤ R is:

Φin(r) =
(Φ0 − Φc) sinh(min

e f f r)

min
e f f r

+ Φc

where Φc = Φin
min and

Φ0 = Φc +
(Φ∞ − Φc)

[
1 + mout

e f f R
]

mout
e f f R
x sinh(x) + cosh(x)

with x = min
e f f R. For r ≥ R we get:

Φout(r) = C
exp (−mout

e f f r)

r
+ Φ∞

where

C =
R(Φc − Φ∞)

[
cosh(x) − sinh(x)

x

]
exp (mout

e f f R)
mout

e f f R
x sinh(x) + cosh(x)

D

x

y

r

Large Body
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Fig. 1. Two body problem.

Now we take the thin-shell approximation
(i.e. 1 � min

e f f R) and for simplicity assume
mout

e f f R � 1, and obtain approximate expres-
sions for the field inside and outside the large
body respectively:

Φin(r) ≈
2(Φ∞ − Φc) exp [−Rmin

e f f ] sinh(min
e f f r)

min
e f f r

+Φc

Φout(r) ≈ R(Φc − Φ∞) exp (mout
e f f R) ×

exp (−mout
e f f r)

r
+ Φ∞

Notice that due to the exponential factor, the r
dependence in Φin(r) is quite suppressed well
inside the body (where Φin(r) ≈ Φc), and only
within a thin shell near the surface of the body
the field grows to match the exterior solution
Φout(r).

Figure 1 depicts the two body problem con-
sidered below. In order to solve it, first we
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expand the most general solution for the two
body problem in complete sets of solutions in-
side and outside the test body:

Φ(r, φ, θ) =

{∑
lm Cin

lmil(µr)Ylm(θ, φ) r ≤ R2∑
lm Cout

lm kl(µ̃r)Ylm(θ, φ) r > R2
(3)

where il(µr) and kl(µ̃r) are the spherical mod-
ified Bessel functions; µ̃ = mout

e f f and µ =

mtest body
e f f ; and R2 = Rtest body.

Now we assume that the chameleon field
outside the test body can be taken as the one
body problem solution:

Φout(ρ) = C
exp (−µ̃ρ)

ρ
+ Φ∞

where ρ = r − Dẑ.
We shall use the following identity to

rewrite Φout(ρ) in terms of the coordinate sys-
tem centered in the middle of the test body:

exp (−µ̃|r2 − r1|)
4π|r2 − r1| = µ̃

∞∑

l=0

il(µ̃r2)kl(µ̃r1) ×

l∑

m=−l

Ylm(θ2, φ2)Y∗lm(θ1, φ1)

where r2 < r1. For the problem at hand
r1 = Dẑ, θ1 = 0, r2 = r.The problem we are
considering is symmetric respect to rotations
around the z axis, and therefore, only the term
with m = 0 contributes to the solution. Now we
match both solutions as follows:

Φin(R2) = Φout(R2)

and find:

Cl0 =
[
(Φ∞ − Φ2min

in )δl0 + Cµ̃il(µ̃R2)kl(µ̃D)
]
×

√
4π(2l + 1)
il(µR2)

(4)

where Φ2min
in is now the value of Φ that makes

the effective potential of the two body problem
reach its minimum inside the test body.

Table 1. Values of n (parameter of the
chameleon potential) and β intervals (coupling
of the chameleon to matter) such that the Sun
and the Earth satisfy the thin shell condition
(M = 1000.[cm−1]).

n β for the Sun β for Earth

1 (10−13, 10−1) (10−11, 10−1)
2 (10−16, 10−1) (10−13, 10−1)
3 (10−17, 10−1) (10−14, 10−1)
4 (10−19, 10−1) (10−15, 10−1)
5 (10−20, 10−1) (10−16, 10−1)

3. Force on a free falling body

In this section we calculate the force on a free
falling test body using the approximate solu-
tion for the chameleon field we have found in
section 2.

Fz = −
∫

V
d3xT

β

Mpl
e

β
Mpl

Φ∇Φ

= −T
∫

V
d3x

∂ exp[ βΦ

Mpl
]

∂z

= −2πT
∫ R2

0
ρdρ

[
e

[ β
Mpl

Φ(Y+ρ)] − e
[ β

Mpl
Φ(Y−ρ)]

]

' −2πTβ
MPl

∫ R2

0
ρdρ[Φ(Y + ρ) − Φ(Y − ρ)](5)

being Y = D+R2. Now we evaluate the field us-
ing Eqs. (3) and (4) considering only the term
with l = 0:

Fz ' 4πTβ
Mpl

[(
C exp (−µ̃D)

µ̃R2D
−

(
Φ2min

in − Φ∞
))
×

R2 sinh(µ(D + R2))
µ

]
(6)

From the expression above, it follows that
the force has an important dependence with the
distance between the test body and the large
body through the term sinh(µ(D+R2)). Now we
can compare the predictions of the chameleon
model using Eq. (6) with experimental bounds
on the differential acceleration of two bod-
ies of different composition: η = 2 |a1−a2 |

|a1+a2 | . For
the case of the test body we must consider
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Table 2. Results of the Eötvös experiments (for
original references see Kraiselburd & Vucetich
2012). Columns 1 and 2 show the composition
of the bodies that are free-falling, column 3 in-
dicates whether the experiment measures the
free fall to the Earth or Sun, column 4 shows
the experimental bound on η.

Body 1 Body 2 source (η ± ση) × 1011

Al Au Sun 1.3 ± 1.5
Al Pt Sun 0.03 ± 0.04
Si/Al Cu Sun 0.51 ± 0.67
Moon-Like Earth-Like Sun 0.005 ± 0.089
Be Ti Sun - 0.031 ± 0.045
Be Al Sun 0.0 ± 0.042
Be Ti Earth 0.003 ± 0.018
Be Al Earth -0.015 ± 0.015
Be Al Earth -0.02 ± 0.28
Be Cu Earth -0.19 ± 0.25

T = −ρ + 3P since in this case ρ ' 1011cm−4

and 3P ' 108cm−4. Table 1 shows the val-
ues of the coupling of the chameleon to mat-
ter β for each value of the parameter of the
potential n such that the large body satisfies
the thin shell condition. For the values shown
in table 1 we fixed M = 1000[cm−1] (the
other free parameter of the chameleon poten-
tial), but we have also calculated β for lower
values of M = 1, 10, 100[cm−1]; for these
cases the minimum value for β to satisfy the
thin shell condition are larger than the values
shown in table 1 and thus we the correspond-
ing values of η are larger than current exper-
imental bounds. . Table 3 shows the value of
η for pairs of test bodies with different com-
position free-falling in the gravitational field
of the earth; the experimental bounds for the
same test bodies are shown in Table 2. We
have also calculated η for experiments study-
ing free falling bodies towards the sun; in this
case the difference between the accelerations
of the test bodies is so large that a1

|a1+a2 | ' 1
and a2

|a1+a2 | ' 0 and therefore in all these sit-
uations we can use η = 2. We obtain similar
results for the bodies falling through the earth
(see table 3).These results suggest that the

Table 3. Predictions for the differential accel-
eration of free-falling bodies in the gravita-
tional field of the earth within the approxima-
tion considered in this paper. Columns 1 and
2 show the composition of the bodies that are
free falling, column 3 shows the value of n
(free parameter of the chameleon potential),
column 4 shows the value of β (coupling of the
chameleon to matter) and column 5 shows the
value of the differential acceleration η.

Body 1 Body 2 n β ηchameleon

Be Ti 1 (10−10, 10−5) 2.000
1 10−11 1.939
2 (10−12, 10−6) 2.000
2 10−13 1.860
3 (10−13, 10−7) 2.000
3 10−14 1.944
4 (10−14, 10−8) 2.000
4 10−15 1.850
5 (10−14, 10−8) 2.000
5 10−15 1.996
5 10−16 1.498

Be Al 1 (10−10, 10−5) 2.000
1 10−11 1.231
2 (10−11, 10−6) 2.000
2 10−12 1.982
2 10−13 1.059
3 (10−12, 10−7) 2.000
3 10−13 1.992
3 10−14 1.287
4 (10−13, 10−8) 2.000
4 10−14 1.959
4 10−15 1.060
5 (10−14, 10−8) 2.000
5 10−15 1.716
5 10−16 0.686

Be Cu 1 (10−11, 10−5) 2.000
2 (10−12, 10−6) 2.000
2 10−13 1.998
3 (10−14, 10−7) 2.000
4 (10−14, 10−8) 2.000
4 10−15 1.997
5 (10−15, 10−8) 2.000
5 10−16 1.994
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chameleon model might be ruled out by Eötvös
type experiments. Since we are working with
an approximate solution of the chameleon field
equation, we avoid reaching to stronger con-
clusions. Work in progress includes finding an
exact solution of the two body problem to ver-
ify results shown in this paper.
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